Localised and delocalised excitons in star-like squaraine homo- and heterotrimers.
نویسندگان
چکیده
Exciton coupling of localised chromophore states within covalently bound superchromophores is a viable strategy to modify optical properties such as spectral broadening and red-shifting of absorption bands. These are desirable properties for e.g. organic photovoltaic applications. Attaching three squaraine dyes to a central nitrogen core in a star-shaped manner leads to the formation of superchromophores that may form localised and delocalised excitons upon photoexcitation. In this work we investigated two homotrimers, two heterotrimers and a heterodimer formed by the combination of two different squaraines SQA and SQB. Due to exciton coupling the two homotrimers display a red shift of the main absorption band by about 1000 cm(-1) compared to their monomeric reference compounds. On the other hand, the heterotrimers show a broadening of the absorption spectra with three peak maxima at the exciton manifold band. In fluorescence experiments the homotrimers display signals similar to the emission of the monomeric compounds but red shifted. However, the heterotrimers and the heterodimer show, beside emission from the delocalised lowest energy state, an additional signal that overlaps strongly with the absorption. Excitation and time-dependent emission spectra of the hetero compounds indicate that this emission stems from a localised higher energy state. This interpretation is corroborated by transient absorption measurements with fs-time resolution.
منابع مشابه
Three-dimensional electronic spectroscopy of excitons in asymmetric double quantum wells.
We demonstrate three-dimensional (3D) electronic spectroscopy of excitons in a double quantum well system using a three-dimensional phase retrieval algorithm to obtain the phase information that is lost in the measurement of intensities. By extending the analysis of two-dimensional spectroscopy to three dimensions, contributions from different quantum mechanical pathways can be further separate...
متن کاملA unified orbital model of delocalised and localised currents in monocycles, from annulenes to azabora-heterocycles.
Why are some (4n+2)pi systems aromatic, and some not? The ipsocentric approach to the calculation of the current density induced in a molecule by an external magnetic field predicts a four-electron diatropic (aromatic) ring current for (4n+2)pi carbocycles and a two-electron paratropic (antiaromatic) current for (4n)pi carbocycles. With the inclusion of an electronegativity parameter, an ipsoce...
متن کاملCurrent trends and future challenges in the experimental, theoretical and computational analysis of intervalence charge transfer (IVCT) transitions.
Mixed-valence chemistry has a long and rich history which is characterised by a strong interplay of experimental, theoretical and computational studies. The intervalence charge transfer (IVCT) transitions generated in dinuclear mixed-valence species (particularly of ruthenium and osmium) have received considerable attention in this context, as they provide a powerful and sensitive probe of the ...
متن کاملDelocalised Spinors
Solutions to the four-dimensional Euclidean Weyl equation in the background of a general JNR N -instanton are known to be normalisable and regular throughout four-space. We show that these solutions are asymptotically given by a linear combination of simple singular solutions to the free Weyl equation, which can be interpreted as localised spinors. The ‘spinorial’ data parameterising the asympt...
متن کاملStrain Engineering of the CeNi5 System
The effect of strain on the CeNi5 system has been investigated using density functional theory (DFT). The studies have shown that localised Ce 4f and Ni 3d states carry the magnetic moment of the material. The Ce 4f moment remains relatively unchanged during strain whereas the Ni 3d moment increases as the strain becomes increasingly tensile in both the basal and non-basal directions. A signifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 4 شماره
صفحات -
تاریخ انتشار 2016